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1. INTRODUCTORY REMARKS AND FORMULATIONS

Problems of optimum resource distribution appear when there are several op-
erations consuming a resource of the same kind and at the same time effectiveness
of any operation fulfilment depends on the quantity of resources assigned to it while
the total amount of resource is limited. The above situation occurs in a great num-
ber of applications. In many of them a distributed resource is quantified or we
shall say, portional. One-type equipment units, production workers, standardized
capacities, containers and even financial means can be considered as a portional
resource if allotted sums are distributed with a preassigned accuracy.

Problems of portional resource optimum distribution require combinatorial
methods in a formalized solution. This paper is dedicated to generalization of
the known methods and development of new combinatorial methods of solving the
problems of portional resource optimum distribution and the essential place in this
work is given to the results of experimental testing of the proposed algorithms.
Three mathematical models which are close to one another with respect to the
applied solution methods are treated as representative applications.

The first out of the three mathematical models is considered as follows. Let yg
be a total volume of a distributed portional resource, i.e. yo i1s integer. Let there be
M operations with the effectiveness of each i-th operation being determined by the
effectiveness function W;(y;) where y; is the volume of resource assigned to the i-th
operation (y; as well as yo are integers and 1 = 1, M). Then the problem, which
will be further referred to as POPRDI1, is formulated as follows:

M
Y Wi(yi) — extry (1.1)
1=l
subject to:
M .
E Y = Yo, Yo — Inleger (1.2)
=1

yir < i < yia, y; — integer, 1=1 M. (13)



14 V.N. Burkov, M. |. Rubinstein

[t is easy to observe that a necessary and sufficient condition of problem (1.1)-(1.3)

feasibility is
M

Y ¥i1 Sy < Z Yiz (14)

=1 s=1

Note that the effectiveness functions ¥(y) can estimate the effect of operation
fulfilment (for example, the cost of a produced item) as well as the expenses covering
operations fulfilment (for example, the time spent). The objective function in (1.1)
can be maximized (extr; = max) or minimized (extr; = min). As to the values
yi1 and y;z, they can get minimal and maximal levels of resource consumption in
separate operations.

Along with POPRDI its minimax (maximin) variant is considered which is
called POPRD2 and formulated as follows:

extry {Wi(y)} — extr (1.5)
i=1. M

with the constraints (1.2) and (1.3). In (1.5) extr; and extr; have opposite values:
if extr, = max, then extr; = min and vice versa. The objective function can be
interpreted for example as a maximal duration of all operations fulfilment under the
condition that these operations are being fulfilled in parallel. And the effectiveness
function ¥;(y;) should be interpreted as the fulfilment time of the i-th operation
with the resource y; assigned to it.

Incidentally, with the same interpretation of effectiveness function in POPRDI1
it will represent a problem of minimization (with extr, = min) of the total time
spent on fulfilment of the initial complex of operations, but under the condition
of sequential operations fulfilment unlike those fulfilled in parallel in POPRD2. It
should be noted that another “time” interpretation of POPRDI can be considered.
Let yo represent the time assigned for all operations fulfilment under the condition
that they are sequentially fulfilled (in an arbitrary or the assigned order). Let the
total time be distributed between operations on the assumption that it is quantized
(this assumption is fully justified when considering the planning problems where
the check periods include the entity of shifts, days, quarters, etc.). The effectiveness
function in this case determines the cost of an operation, when it is given a time
interval y; for its fulfilment. It is required to distribute times between operations
so that the total cost of the complex of operations fulfilment will be minimized.

If we have in view the above POPRDI interpretation then its generalization
for the complex of operations which contains the constraints of the preceding, leads
to the following problem which will be referred to as POPRD3 and formulated as
follows.

Let the order of fulfilling the operations in the initial complex be assigned by
the network Gy consisting of M arcs which correspond to operations and m vertices
separating the preceding operations {rom those directly following them. With no
discrepancy in the system of the preceding constraints, in the network G, there are
ao circuits. Desides, without limiting the generality, we may consider that in the
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mitial network there exists one initial vertex with no input ares and one final vertex
with no output arcs. These vertices are given the indices | and m, respectively. Let
us associate to the set of arcs [ = {1,2,... , M} of the network G7, the function
g(1) and A(3). For each arc i € [y, g(i) and A(i), the initial and final vertices, are
respectively indicated. Further consider the character of a resource distributed in
POPRD3 (time is a distributed) and introduce the variables z; (j € J,,) time of
occurring events, connected with the vertex j. The time z; of any event occurred for
J > 1 will be a period of time from the moment of complex operations start till the
completion of all operations, represented in the complex network by arcs included
in the vertex j (hence, for example, z; = 0). Now POPRD3 can be formulated as
follows in the variables z;:

M
‘E:l ‘F,‘[Ih“] - Z’{.‘)] . extrl {16]
with the constraints
Zh(i) = 2g(i) 2 Yir, 1 € Iy, (1.7)
<m — 21 = Yo, (13)
z; are integers, j =1, m. (1.9)

With the POPRD3 formulation in the form (1.6)-(1.9) it is assumed that
for y; > yi2 the functions ¥;(y;) are additionally determined ¥;(y;) = ¥,(w2)
(i = 1, M). This assumption allows us not to take into account the upper constraint
on the difference [z,(;) — z4(;)] in (1.7) and realize transition from variables =;
() € J,») to variables y; (1 € Iy) by the formula

¥i = min{z,z) — 243, Yiz }, (1.10)

It is easy to see that POPRDI1 in the last cost-time interpretation represents
a particular case of POPRD3 under the condition that G consists of a unique
path connecting the initial and final vertices. A similar cost-time interpretation of
POPRD?2 also represents a particular case of POPRD3 under the condition that

"¢ consists of parallel arcs, connecting the initial vertex with the final one.

The above problems of optimal distribution of a portional resource have been
considered earlier. POPRD1 under a special condition (the convexity of effective-
ness functions) was considered in [1]. In Section 2 of this paper the corresponding
result will be generalized for some other conditions (conditions 1-4).

Consideration of this problem in Section 2 proves that under conditions of the
monotonicity of efficiency functions, the algorithm of POPRD2 solution practically
coincides with the algorithm of POPRDI solution under conditions 1-4,

POPRDI in a general case was considered in many papers (see, for example,
monograph [2]). In papers [3. 4] solution algorithms of this problem were outlined
and partially investigated. In Section 3 a complete investigation of these algorithms

will be given.
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Effectiveness of POPRD3 for convex functions is investigated in [5]. The con-
tinuous variant of POPRDS3 for convex functions is considered in [6]. The algorithm
of POPRD3 is not, in fact, a “projection” of the algorithm for solving of a contin-
uous problem from [6]. It is constructed by using a different iterative scheme.

2. PROBLEM OF OPTIMAL RESOURCE DISTRIBUTION
BETWEEN INDEPENDENT PROCESSES

The problem formulated in (1.1)-(1.3) will be considered, additional con-
straints (C1-C4) imposed on the functions ¥;(y;)):

Cl: extr; = max, ¥; are nondecreasing and convex upwards;

C2: extr; = min, ¥, are nonincreasing and convex downwards;

C3: extr; = max, ¥; are nonincreasing and convex upwards;

C4: extr; = min, ¥; are nondecreasing and convex downwards.

a b

) Yily) pV¥ilyi)

- J -

] ™ j o je

Fig. 1. Approximate form od the W,(y, ) functions

Approximate form od the W;(y;) functions is shown in Fig. | where the variants
a)-d) correspond to conditions C1-C4. POPRDI under additional condittons 1
C4 will be repectively denoted as POPRD11-POPRD14.
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Let us begin consideration with POPRDI11. Denote by Af; the values to be
determined in the following way (see Fig. 1.a):

d:j - il(.’)" "l(f_ l)r J = ¥a + 11-“  ¥i2s 1 € IB- (21}

Determine the value ' = (E::T:‘ ¥i2) — yo. Note that by virtue of (1.4) the total
number of elements in the set of all values {4} determined in (2.1) is not smaller
than M. Now we can formulate two assertions.

ASSERTION 1. Let M' of minimal values Alj, I =1,M) be chosen from the set

of values {A:J} determined from (2.1). Then the chosen values can be distributed
among the sequences of the following form

(AL, i =y =k + L yin—ki,... i}, V'€, (2.2)

where I' 1s some subsel of the indez set Iy which includes such i’ that ky > 0 and

Toer ki =M.

PROOF follows directly from condition C1 (see Fig. 1.a) which provides monotone

non-decreasing property of A}, in each of the sequences (2.2).

ASSERTION 2. Optimal solution POPRD11 {y;,, i € Iy} ts determined by values
ki+ and subset I' appearing in Assertion 1:

!lzu = 5':2 - ki, 1€ I';
Yio = Y2 ieh\/I.

ProoF. It is easy to observe that the value of the objective function of POPRDI11
for any solution {y!,,1 € [y} (or briefly, for solution {y!,}) differs from its value for
the solution {y'(12)} in the sum of some M’ values from the sets {A};}. However,
as it follows from Assertion 1, the solution {y;} differs from the solution {y/,} in
the sum M’ of minimal values from the set {A};} which proves its optimality.

Assertions 1 and 2 for POPRDI11 are directly transferred to POPRDI2 if
the values A}, are not determined in the way it was done in (2.1) but they are
determined as follows: Aj; = W;(j — 1) — ¥;(j). Now consider POPRD13. Denote
by A} the values determined as follows (see Fig. 1.a);

“l:l;:\pt(.}}-qil{.’*'l)t j=yil|yil+l-=~-lyiﬂ_l, IEfg (23‘]

Further determine the value M" = y, — }:::’ ¥i1. Note that by virtue of (1.4)

the total number of elements in the set of values {A}}} from (2.1) is not smaller
than M". Now for POPRDI13 two assertions similar to Assertions 1 and 2 can be

formulated.

ASSERTION 3. Let My of mimimal vaiues .}.Ej; (I =1, M") be chosen for the sels
of values {A!.}. Then the chosen values can be distribuled among the sequences of

)
the form

{A‘-”J”_ j” = yi"ltyi”1 + l. .fh”} +k:fll _— 1}. 3.” E !”.
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where " is some subset of the index set Iy including suchi”, that }_ ..c ;0 k' = M"

ASSERTION 4. Optimal solution of POPRD13 {yl,,i € lg} 1s determined by the
values k!' and subset " appearing imn Assertion 3 as follows:

Yo =Via—kis, 1€l
y::l = Y2, 1 € Iﬂ \ ™

Proof of Assertions 3 and 4 is presented similarly to the proof of Assertions 1
and 2.

Assertions 3 and 4 are transferred directly from POPRD13 to POPRDI14. And
at the same time A = ¥;(; + 1) — ¥(;) (compare with (2.3)).

On the basis of Assertions 1-4, the solution algorithm for POPRDII-
POPRDI14 can be substantiated. To simplify the description of this algorithm
Ay(yo, M, Y., Y5, {¥;}) (Y; and Y; are M-dimensional vectors with the compo-
nents y;; and y;; respectively), we introduce some unified notations (y is an integer

scalar):

) { M', when solving POPRD11 and POPRD12,
M", when solving POPRD13 and POPRD14;

¥;(y) — ¥i(y—1), in solving POPRD 11,

¥ (y—1)—¥;(y), in solving POPRD 12,

V:(y+1) = ¥,(y), in solving POPRD 13,

V. (y) = ¥Y;(y+1), insolving POPRD 14.

Al,y) =

(Assignment of values A(1, y) in four above indicated cases is shown in Fig. 1). Now
the algorithm A, can be represented as follows:

THE ALGORITHM A;(yo, M,Y:,Ya,{¥;})

Initial step. Components y;p of a desired solution yo are given initial val-
ues yiz (in solving POPRDI11 and POPRDI12) or initial values y;; (in solving
POPRD13 and POPRDI14). For the formed solution we determine the set of values

{ﬁ(l, yiﬂ)ri € Iu]'.

[terative step (to be repeated M, times). Determine the index i’, such that

A(1', yig) = ?éi}l:{ﬁ(f? Yvio) }-

For the found index i' we assume y;9 = yio + 8, where § = =1 in solving
POPRD11, POPRDI12 and § = +1 in solving POPRD13, POPRD14. Then for the
same index i’ we additionally calculate the value A(i', y;:0). In this connection. if
¥io = Yinr (in case of POPRDI11 and POPRDI2 solution) or y;:0 = yir2 (in case of
POPRDI13 and POPRDI14 solution) we assume A(1Y', y;0) = const,, where const,
s a sufficiently large constant (const, can be given the value max, _—7{|W¥ (v:2) -

‘Fif!ﬁl)”)-
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Analyse the algorithm A, from the viewpoint of its complexity estimate Here
and in what follows there will be either asymptotical complexity estimates, deter-
mining the character of its value dependence on the main problem parameters with
their sufficiently large values, or experimental complexity estimates which represent
average (by the series of experiments with the algorithm) times of calculation of
initial data randomly generated.

Regardless of the character of the complexity estimate », of algorithm A, it
can be represented as follows:

W = y; <+ le{', (2‘4)

where v} and »{' are complexity estimates for the algorithm initial and iterative
steps, respectively. Relation (2.4) will be applied for obtaining the complexity
estimates of two modifications of the algorithm A, — algorithms Ai” and Ain. in
which we realize in various ways one of the three mass operations, i.e. an operation
of finding the minimal value out of the values {A(1, ;0),i € Iy} (other two mass
operations are operations of additional calculation of the values y;o and A(3, yio))-

Thus, consider algorithms AE” and Ain.

In the algorithm A«(‘” the operation of finding the minimal out of a finite
number of values is realized by means of the simplest algorithms of ordering
A2(ISX, M), where ISX is the array of minimal values and M is its length.

ALGORITHM A,(ISX, M)

Step 1. Setip =1,1=1.

Step 2. Set i = 1+ 1 and compare values /SX (i) and /SX (ip). If the first one
happens to be strictly smaller than the second one, set iy = 1.

Step 3. If i = M, finish the procedure. In the opposite case go back to step 2.

It is easy to observe that by the end of the algorithm A, operation the minimal
value in the array IS X coincides with /SX (1p). Asymptotical complexity estimate
of algorithm A, is evidently determined by the value

vy = O(M), (2.5)

(The value v, in (2.5) estimates the number of the simplest operations of adding
and comparing type fulfilled by the algorithm A;. The asymptotical complexity
estimates of other algorithms, which will be described further in the text, have the

same meaning).

In the algorithm A{n the operation of finding the minimal value out of the
finite number of values is realized with the use of a special structure S; which is
formed before the first iteration of the algorithm and corrected in the course of its
iterative procedure. Describe the structure S; and algorithms of its construction
and correction. The considered structure Sy will be characterized by two integral
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arrays I/ and K, where [] is an array of the initial values indices, and /K s
an array of “internal coordinates” of the initial values indices in the structure 5;.
The initial values array will be, as before, denoted by /S X, considering its length
as equal to M. Lengths of the arrays I/ and [K are equal and they will be
further determined. The structure S; assigned by the arrays I/ and [K can be
schematically represented in the form of a tree D). The lower level of this tree
corresponds to various values of the initial array /SX. Each new (higher) level of
the tree is generated as follows: all vertices of the lower level are divided into pairs
and the best vertex of each pair (the best vertex is the one which corresponds to
the smallest value in the array ISX) is “transferred” to a generated level. The
vertex which has not found a pair for itself also passes to the generated level
Construction of the tree D ends when the level consisting of one (root) vertex is
found. Vertices of the tree D, will be labeled by the indices of the corresponding
array IS X values, however in order to show the connection of this array with the
tree [y it will be denoted by D,(ISX, M). Fig. 2.a shows the tree D,(ISX M)
for the array ISX =(5,2,8,1,1.8,4.3,7.8,8.0,9.1,10.2, 2.8).

Fig. 2. The tree D, and the path of the algorithm

Between arrays I/, IK and the tree D, of the considered structure S; there
#s correspondence. In array [] the indices of the array ISX values lie in the
following order: first the indices corresponding to the vertices of the lower level.
then the indices corresponding to the vertices of the next level, ste. The indices
corresponding to vertices passing over from one level of the D, tree to another
one (which 1s not the result of comparison with other vertices but because of the
absence of their pair) are included only in that part of array /1, which corresponds
to a higher level of the tree 2, A« 1o the roordinate of array /K, zeros alternate
with nonzero indices. For each pair oi tuc vertices of the tree [7) generated in tlie
course of a higher level formation, 0 in the array /X corresponds to the left vertex
while the index which is in [K to the right of it, indicates in the array [T of the
internal coordinate the index of that vertex which passes over from a comparod

vertices prar to a generated level. It is easy to see that the number af levels L,
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the tree D, is determined only by the parameter M:

g {1og,M+1. if M =2F

2.6
llog; M| + 2, otherwise, (26)

where L is some integer and [z], as usually, denotes an integral part z.

Now consider algorithms for construction and correction of the structure

Si(ISX, M) which will be a composite part of the algorithm A?]. The above

algorithms of construction and correction will be denoted by A3(ISX, M) and
A(ISX, M, 1) respectively.

ALGORITHM A3(ISX, M)

Step 1. Assume mg =M, m' = —1 as well as II(-j)=j, j=1,M.

Step 2. Assumem' =m' +2, m" =m' + 1. If m" > mg the procedure should
be finished; in the contrary case assume mo = mp+ 1, [IK(m') =0, IK(m") = mq
and go to the next step.

Step 3. Compare two elements ;' = [I(m’') and ;" = II(m"). If the element
)’ 1s better than j” (ie. ISX(J') < ISX(J"), assume [I(m,;) = J', otherwise
II(my) = J". Go back to step 2.

_ It is easy to show that the number of iterations of steps 2 and 3 in the algorithm

Aj is equal to (M —1). This result follows from an obvious relation 2m = M +m—1
whose left part determines the total number of the tree D, vertices compared in
the algorithm Aj, while the right part is the total number of the tree D, vertices
(witheut the root vertex and vertices passing to a higher level with no “pairs” taken
into account). Thus, asymptotical complexity estimate of the algorithm A9, has

the form:
vz = O(m) — O(M). (2.7)

Additionally it should be noted that, since m = M — 1, the length of arrays /] and
IK are (2M —-1).

Now formulate the main feature of the structure S, generated by the algorithm
Aa in the form of assertion.

ASSERTION 5. The last element in the array II, 1.e. the element [I(2M - 1),
indicates the minimal indez of the values included 1n the array ISX.

Proo¥ directly follows from the description of A3. Passing over to the al-
gorithm of structure 5 correction, consider its two modifications — algorithm
.-li”(f.S'X, M, 1) and AE’I(ISX. M,i;). Both algonthms introduce corrections in
the structure S;, connected with the change of the i — the component in /SX.
Algorithms A4(1) and A4(2) realize movement along the path connecting, in the
tree [0y, the vertex ip with the root vertex. In the course of this movement the
vertices included in this path are corrected. This correction is reduced to a possible
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replacement of their indices. In the algorithm Ai” the above path goes w the the

root vertex. In the algorithm Ai” the movement may end by the “arrival” to the
vertex whose index is not changed in the correction process. Fig. 2.b shows how
the tree D,(ISX, M), depicted in Fig. 2.a, is corrected when the value of /5X(5)
is changed from 7.8 to 3.9. The path of tree correction is shown in Fig. 2.b by
double lines. The vertices participating in correction are connected to this path

also by double lines. The algorithm Ai” “follows” the path (shown in Fig. 2.b) up
to the root vertex. The algorithm Aiﬂ “follows” this path only to the third (from
below) level of the tree D, since the rule of the algorithm Aiﬂ stop (simultaneous

fulfilment of conditions II(i") = j and j # ip) starts operating in the movement
along the second level of the tree D,.

It is easy to see that the number of Step 2-4 iterations in the algorithm A4
coincides with the number of levels in the structure S; tree. Thus, the asymptotical

complexity estimate of the algorithm .-11” by virtue of (2.6) gives the value

vy = O(log, M). (2.8)

Note, that the structure S;, connected with the ranking of arrays of a finite
length is described, for example, in [7] and in some earlier papers. However, such
a detailed description of this structure and algorithms of its construction and cor-
rection are presented for the first time in this paper.

Now we are able to determine asymptotical complexity estimates of the algo-

rithms AE” and A?}. As to the algorithm Ai” the finding of minimal value among
{A(f,yi0), 1 € I} is implemented by means of the algorithm A,. Therefore, using

(2.7) and (2.8), the asymptotical complexity estimate uf” of the algorithm Ai”
can be represented as

v = O0(M+MM)=0MM). (2.9)

In the algorithm Ain the finding of the minimal value among the values
{A(1,¥i0),1 € I} is realized by means of the structure S, in one operation. How-

ever this structure in the algorithm A?] should be, at first, initially constructed
and, secondly, it should be corrected upon completion of each iteration. The first
procedure is realized by means of the algorithm A3, the second one — by means

of the algorithm .4{,,”. Using (2.4), (2,8) and (2.9) we determine the asymptotical
complexity estimate yin of the algorithm Ainz

n = O(M + M log, M). (2.10)

Now consider POPRD2. The problem will be considered under each of the
following additional conditions (C5, C6), imposed on ¥,(y;) (i =1, M):

C5: W¥; are non-decreasing;

C6: W, are non-increasing.
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POPRD2, where extr;, = max, extry; = min in fulfilling the condition 5 or
extr; = min, extr; = max under the condition 6, will be denoted by POPRD2I
or POPRD22, respectively. POPRD?2, where extr, = min, extr; = max under the

condition 5 or extr, = max, extrs = min under the condition 6, will be denoted by
POPRD23 or POPRD23, respectively.

The algorithm Ag(yo, M, Y, Y, {¥;}) similar to the algorithm A, can be ap-
plied to solve POPRD21-POPRD24. Before describing the algorithm A; we intro-
duce the notation used in its description:

o { (Ti=Y wi2) — yo, in solving POPRD21 and POPRD22,
yo — (=M y:1), in solving POPRD3 and POPRD24;
¥(i.y) = { ¥i(y— 1), in solving POPRD21 and POPRD22,
W.(y+ 1), in solving POPRD23 and POPRD24;
(1, yi1) = consty = min{¥(i,y;;)} =1, in solving POPRD21;
min{¥(:, %)} +1, in solving POPRD22;
W(1, yi2) = consty = min{¥(z,¥;2)} +1, in solving POPRD23;
min{¥(7, yi2)} — 1, in solving POPRD24.

W¥(1, yi1) = const,

Il

"F(i'l yi!] = consts

ALGORITHM As(yg, MY, Y, {‘I'l})

Initial Step. Ascribe to the y;o of the desired solution Y the initial y;; (in
solving POPRD21 and POPRD22) or initial values y;; (in solving POPRD23 and
POPRD24).

Iteration step (fo be repeated M fimes). Determine the index ' such that
Y(i', yio) = extrier, {¥(i,yi0)}. For the found index i’ assume y;p = yiro + 6,
where § = —1 in solving POPRD21, POPRD22 and 6§ = +1 in solving POPRD23,
POPRD24. Then for the same index i’ the value ¥(i', y;0) should be recalculated.

The proof that the algorithm Ag provides an accurate solution of POPRD21-
POPRD24 is trivial.

3. PROBLEMS OF OPTIMAL RESOURCE DISTRIBUTION
BETWEEN INDEPENDENT OPERATIONS
WITH ARBITRARY RETURN FUNCTIONS

We start considering POPRD1. Now consideration will be fulfilled with no
additional conditions limiting the kind of functions W;(y;). The corresponding
problem will be referred to as POPRDI15. For its solution we propose the algorithm
constructed by the scheme of dynamic programming.

Description and investigation of the algorithm require introduction of some no-
tation. Denote by { P(y, I)}, where I is a fixed subset of the set [, = {1,2,... , M},
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the family of problems where each of them with an assigned integer parameter y is
formulated as follows:

3 Wilyi) — extry (3.1)
Vel
under constraints
Y=Y, (3.2)
W
vir S ¥ < ¥ia, yi — integer, 1€ [. (3.3)

To provide feasibility of problems from the family {P(y, [)} it is necessary that
the integral parameters y satisfly the constraint

Lva=nll)Ly<nll) =1 v (3.4)
171 Vel
Denote by ¥(y, I) the optimal value of the objective function of the problem P(y, /).
{¥(y, I)} will denote the table of values ¥(y, I) that corresponds to various values
of the integral parameter y, satisfying (3.4). It is evident that any table {¥(y, I)}
has a dimension (length) n(l), where n(l) = y2(I) — 11 (I) + 1 (values ¥ (/) and
y2(I) are determined in (3.4)).
The basis of the considered algorithm of dynamic programming is the following
easily verifiable relation which is true for any (complete) partitioning of the subset
I' of the set I into the eigen subsets I and I3, and any integer y from the interval

[ (1), y2(I")]:
¥(y,I') = extr {(¥('. I+ ¥(y-y'. 15)}, (3.5)

FI(’:I;-I;)'EF'EF![FMI;:I;J

where s . 4
iy I, Iz) = m“x{ylt‘l)ty o !f!(-rz)}t

3 ! 3.6
va(y, !i.fz) = max{y2(1}),y - 9'1([;)]' (3.6)

As a rule the algorithm for dynamic programming includes two subalgorithms:
the first one which constructs the system of the objective function optimal values
can be conditivnally called a direct move while the second one is to be called
a reverse move. For brevity the problemns family {P(y, ')} will be denoted by
P(I') and simply called — problems. Respectively, the table {¥(y, /)} for the
problem P([I') is denoted by ¥(I'). Consider first the algorithm of the “direct move”
(the algorithm Az). With its help the value of the objective function ¥(y,, Ip) is
constructed for the initial problem Py, Io)).

ALGORITHM Az|P(ye, fo)]

Initial Step. Include in the current front all problems P(1), where i € [, and
solve each of the front problems, having constructed the tables ¥(:) for them

Iterative Step (to be repeated till the obtaining of a current {ront. winch con-
sists of two problems FP(ly) and P(l3) with I, U J3 = I). Choose two problems
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P(L}) and P(l3) in the current front. Then, using their tables W(/,) and ¥(/4)
and by means of (3.7), cgnstruct the table V(i U I3) for the problem P(I{ U [})
Replace in the current front the problems P(I{) and P(I}) by the problem P(/')
where [' = [{ U I} (from the step description it is easy to conclude that for any

current front composed from the problems P([;), where k = 1, K, we always have
I UiU...Ii =)

Concluding Step. Using two unique problems P([;) and P(/,) of the current
front and by means of (3.5) from tables W(/,) and ¥(/;) we obtain the optimal
value W(yo, Ip) of the objective function of the problem P(yq, ly).

Note that with the arbitrary ¥;(y;) the table ¥(y') can be constructed by
means of (3.5) with respect to tables W(I{) and ¥(J;) only by scanning all values
of the parameter y'. An admissible region of interval parameter y' changing is to
be determined by the following relations (see 3.5), (3.6)):

ny L, L)<y <wy.I,L), wnl')<y<Lynll). (3.7)

The described region (3.7) is shown in Fig. 3.a and Fig. 3.a corresponds to the
case y1(I3) + y2(13) 2 va(I}) + n (13) (n{I3) > n(I})), while Fig. 3.b corresponds
to the case, determined by a reverse inequality.

From Fig. 3 it is easy to conclude, that the volume of a direct scanning in
construction of the table ¥(/') with the help of (3.5) amounts to the value

v(I') = O[n(1}), n(13)]. (3.8)

From the same Fig. 3 it can be seen that obtaining of the optimal value of the
objective function of the problem P(y’, I') (for some fixed value y') is connected
with scanning whose volume is estimated by the value O[max{n(I}), n(I3)}].

From (3.8) the following can be directly obtained.

ASSERTION 6. Asymplotical complexity estimate of table ¥(I,) construction in the
afgorithm A; amounts {o the value

"(fu)=0( > nm)nm)). (3.9)

s, 43€10 (5y )

It shoula be noted that the reaul formuilated in Assertion & does not depend
on the rule of chousing the pair ol problems in the current froat in the iterative
step of {he algarithm .+, However, efficiency of a reverse move subalgorithm to be
considercd below essenlially depends on the rule, applied. in the algorithm A7, of
chassing = pair of joined prabicn:.

As o the ru'e of chioice, we shadl consider two sucli rules (in come sense, oppo-
site ones). ‘. woth ru'es the ranks of pioblems F(1') generated in the algorithin A+
are used. These ranks, denoted by ri/), are deteunned in the couwrse of alzorithin
Az. For the problems of the inital current fiont uhe ranks are assigned as zero
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Fig. 3. Admissible regions of interval parameters

ones. With each correction of the front connected with the joining of the problems
P(1}) and P(I;) in the problem P(I’) the rank of a new problem is determined by
the formula

r(I') = max{r(I}), r(I3)} + 1. (3.10)

Rule 1. One of the chosen problems in the current front has a minimal rank
and the other has a maximal one.

Rule 2. Both chosen problems have minimal ranks with respect to othér prob-
lems of the front.
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Action of Rule | and 2 ih the algorithm A; can be observed on some tree
Dy. The tree Dy vertices correspond to problems P(/') where the algornithm A,
operates while the arcs connect each pair of vertices corresponding to the joined
problems P(I}) and P(J}) with the vertex of a corresponding problem P(I} U I})
The tree D; for the algorithm A; which uses Rules 1 and 2 is shown in Fig. 4.a and
4.b, respectively (in both cases M = 9).

Fig. 4. The tree D, for the algorithm A,

Efficiency of the reverse move algorithm is influenced not only by the rule
of choosing the joined problems in the algorithm A7 but also by the variants of
generating and storage of the intermediate information.

A remark of a general kind should be made. Up to now we have considered
only asymptotical complexity estimates. But in many cases estimates of a required
memory volume are important too. These estimates are especially important for the
algorithms of dynamic programming, where a necessity of creating and processing
relatively large arrays of intermediate information occurs.

Consider two variants of storing intermediate information in the course of
algorithm A; work.

Variant 1. The tables W(I”") of all problems P(I') generated by the algorithm
A7 are to be stored.

Vartant 2. The tables of only those of problems P(/;), which compose the
current front, are to be stored. And the table of each new problem is located in
that region of memory which was taken by the problems “joined by it”.

Consider two modifications of the algorithm A;. In the first one, which is
referred to as the algorithm .—‘l%.”, in the iterative step of the algorithm A; one uses
Rule 1 of the joined problems choice. In the second modification, to be denoted
by A", in the iterative step one uses Rule 2. In the algorithm of the direct
and reverse moves of the considered solution of POPRDI15 (problems P(yy, [) the
main component in the total volume of intermediate information is the summarized
volume of the stored tables W(I'). This volume will be denoted by ¢; for variant |
and by ¢4 for variant 2 of storing intermediate information. The following is valid:
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ASSERTION 7. 1) For both modifications A;” and A-t,n of the algorithm Az
M

gr = 3 n(3). (3.11)

2) For modifications .45,” and ..4:‘:"] of the algorithm A; respectively

q;= E(M-—i+2)n(i]—n(l), (3.12)
i=1

47 = )% n(i)([log, M| + 1) (3.13)
=1

(actually the estimates for the volume of stored information are represented in
(3.12) and (3.13)).

3) For modification A.‘,” the value ¢; is minimal if the order of “conmecting”
the problems P(i) to the procedure of the curreni front correction 1s determined by
permuiation iy,1;, ... , 1y, for which

m(iy) < n(iy) < ... < n(ijy). (3.14)

Further, consider two modifications of the reverse move algoggthm. One of
them, denoted by A{,” , is oriented to variant | and the other, one denoted by A;ﬂ ,
to variant 2 of storing the intermediate information, generated in the algorithm A-.
Let us accept that in variant 1 (tables ¥(I')) are stored) of all problems, generated
in the algorithm A7 after “removal” of each problem P(I”) from the current {ront,
the table W(/") for this problem is replaced by the table {y; (v, I")} (or briefly, by
the table {y;(y)}, where y; is the optimal magnitude of the values y' from (3.15).
Let us also accept that in variant 2 of storing the intermediate information together
with the tables W(/{) of the current front problems the tables i,(]') of the same
problems are also stored. To realize both conditions, it is necessary to form the
table y;(I') parallel to forming of each table W(I') with the help of (3.15) and 1t

does not change asymptotical estimates of the algorithm A; memory.

Since in the algorithm AE} the algorithm A7 must be used as a component.
one can consider two modifications of the algorithm .—if‘}: algorithms .—lf'” and

AS*. And in the algorithm AY""’ one can consider a modification A3 and in

the algorithm A\"*) — a modification .4-?] of the algorithm 4;.

Now the four modifications of the algorithm As of POPRDI5 solution can
be constructed. These modifications will be referred to as algorithm Ay ""**' with
ly,l; € {1.2}, considering that /; = 1 and l; = 2 correspond to rules | and 2 of

choosing the problems in the iterative step of the algorithm A4: and !5 = | and
l = 2 correspond to variants | and 2 of storing the intermediate information.

generated by the algorithm A;. With fixed {; and [, the algorithm ui."“'“ inclhides
. I . . :
the algorithm 43" as the direct move algorithm and as a reverse move algorithm
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l . : . .
the .-l:‘," algorithm will be included with 3 = | and algorithm .-I:,:‘f” — with

ly = 2.

4. PROBLEMS OF OPTIMAL RESOURCE DISTRIBUTION
BETWEEN DEPENDENT OPERATIONS
IN CASE OF CONVEX RETURN FUNCTIONS

In this section we consider POPRD3 formulated in Section 1. Consideration
1s carried out under the additional conditions C1 and C4 described in Section 2.
And here POPRD3 under conditions C1-C4 is denoted by POPRD31, POPRD32,
POPRD33 an POPRD34, respectively.

The following is valid:

ASSERTION 8. POPRD38 and POPE?.D.‘H can be reduced to the problems of
POPRD31 and POPRD32, respectively.

PROOF. Substitute the variables in the problems POPRD33 and POPRD34

i = i — ¥, (4.1)

where §; is any constant not smaller than y;; (i = 1, M). It can be verified that
in the new variables the monotonically increasing function ¥;(y;) becomes mono-
tonically decreasing and vice versa. And the character of convexity (convexity
downwards or convexity upwards) of the function W¥;(y;) is not changing. This
proves the considered assertion (see also Fig. 1).

It should be noted that in substituting the variables in (4.1) the boundaries of
changes of new variables y! are determined as follows:

y:], = yi — Yiz, .’J’:z = ?i - Yi1-

It is easy to see that for the pairs POPRDI11 and POPRD12, POPRDI13 and
POPRDI14 the assertion analogous to Assertion 8 is valid. However, in Section 2
we did not resort to a corresponding consideration, analyzing each of the above
pairs of problems separately. As to the problems POPRD31-POPRD34 the further
considered algorithm of their solution can be directly applied only to POPRD21
and POPRD22. According to the kind of the objective functions, POPRD31 and
POPRD32 can be respectively interpreted as the problems of maximization of a
total effect or of the problem of minimization of total expenses in fulfilment of
complex operations within an assigned time y.

Consider one important result which will be essential in construction of
the algorithin A,o(G%y.y0, Y1, Y2, {¥;}) intended for solution of POPRD31 and
POPRD32. Denote by Z(y) = {z;(y), 1 = 1, m}, the optimal solution of POPRD31
or POPRD32 when replacing yo in (1.8) by y (parameter y is integer). Considering
constg sutficiently large (for example, constg = Z:‘Eh |Wi(yiz) = Wi(yi1)]) determine

for each arc 1t of the network G7y the values Az;(y), cE” and c?} (t=1,M):

Aziy) = saily) = 29)(Y)s (4.2)
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(1) o { 0, Azi(y) 2 ¥,
I‘F;[&I.{y) + l] o "P-[ﬁh(w”s ¥ g 52:(9‘) < Y2, {4‘5}
(2) - { consts, Azily) € v, (4.4)
(Wi[Azi(y)] — Wi[axi(y) = 1], ya < Azi(y).

Denote by G(y) the network G and its arcs by means of (4.2)-(4.4). The
values c:f”(y) and c?](y) of upper and lower capacities (i1 € [) are assigned. On the
network G(y) one should consider various cuts which will be characterized either
by corresponding full partitioning of the set of vertices J,, into two subsets J;(y)
and J3(y), where 1 € Jy(y), m € Ja(y), or by corresponding subsets of arcs ul(y),
whose one part u,(y) includes straight arcs (i.e. arcs (3;, j2) for which j; € J;(y),
72 € Ja(y)), and the other part u,(y) are the inverse arcs ()3, j5) (i.e. arcs for which
71 € Ja(y), 73 € Ji(y)). The value of any cut u(y) in the network G(y) is to be
determined as follows:

cw)= Y &’w- DY ). (4.5)

i€ui(y) 1€ualy)

Denote by @ or (Jy(y), Ja(y)) the minimal cut in the network G(y), i.e., the
cut for which the value in (4.5.) is minimal. Now we can formulate a necessary

result.

ASSERTION 9. Let POPRD31 (POPRD32) with yo = y be admassible and have
the solution Z(y). Let the minimal cut (Jy(y), Jo(y)) be determined for the network
G(y). If the value of this cut does not exceed the value constg then solution Z(y—1)
POPRD31 (POPRD32) uath yo = y — 1 can be obtained from the solution Z(y) as
follows:

2 (y), j € Ii(y);
:.f[y] = J € j?(y)

The proof can be realized by the known scheme used in the analysis of a
clagsical problem referred to as the minimal cost network problem [8, Chapter 3].

zi(y—1)= { (4.6)

From Assertion 9 follows the possibility of recurrent construction of solution
{Z(y)} sequence. Construction of this sequence begins with the value of the param-
eter y, coinciding withy y™**: Z(y™**). The construction of the sequence {Z(y)}
should be finished with the value of the parameter y, coinciding with y,.

ASSERTION 10. Let z; be the length of a minimal path, connecting verter 1 with

vertez j (3 > 1, z{"** = 0) in the network GT; with the arc lengths comnciding with
the values yi; (1 € Iy). Then
max __ _max
y = *m 1 4 -
: (4.7
:f(ym“ ™ =;nu' 1 € Jnm.

ProoF. Optimality of the solution Z(y™**), determined in (4.7) for POPRD31 or
POPRD32, follows from the fact, that for all operations i (i € [;)

a(y™™ ) - ’-'m‘l(!fm“] 2 Yz
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By virtue of monotonicity of the efficiency functions, it provides maximal total
efficiency (POPRD31) minimal total expenses (POPRD32) when fulfilling all op-
erations within the time y™**, For the values of the parameter y there also exists a
lower boundary y™" and its violation leads to admissibility of corresponding prob-
lems. Let z2'" be the length of the shortest path connecting vertex 1 with vertex

m in the network GY; with the arcs lengths determined by the values y;; (1 € /).
Then

ymin . :min‘ (4‘8)

Thus, a correct statement of POPRD31 and POPRD32 assumes that
yRis 2 gy £ YK, (4.9)

On the basis of Assertions 9 and 10 the solution algorithm for POPRD31 and
POPRD32 can be represented as follows:

ALGORITHM A1o(C, %0, Y1, Ya, (¥:})

Initial step. Construct the solution Z(y™**) with the help of (4.7). Generate
the network G(y™**), i.e. by means of (4.2)-(4.4) assign the values cf”(y}““) and
cEn(y}““) for each arc 1 (1 € ) of the network GT;.

Iterative step (to be repeated (y™** — yo) tlmes)

1. Determine a minimal cut {i,(y), #2(y)} in the network G‘;}. With the help
of (4.6) construct the solution Z(y — 1) with respect to a found cut and the known
solution Z(y).

2. Determine the values of lower and upper capacities of the arcs in the network
G(y — 1) using the following “recalculation formulas”

c?)(y), 1 @ 41(y) U aa(y);
My —1) = ¢ (y), i € 4y (y);
|Wi[Az(y) +2] — W[Azi(y) +1]], 1€ da(y). 5:19)
| c?’(y). t € 4y (y) U aq(y);
PDy-1=1{ ) £ &0
(4.11)

|W;[Azi(y) — 1] =¥;[Azi(y) = 2], 1€ ua(y)
3. Assume that y = y — 1 and complete the iteration.

An important component of the algorithm Ayq is the algorithm of constructing
the minimal network cut or the algorithm of finding the maximal flow which soives
the same problem.

In the classical statements of the network the problem dealing with the max-
imal flow in a network, has unilateral constraints on the arcs capacities. In the
presence of bilateral constraints there appears the difficulty connected with creation
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of the initial feasible flow. Such difficulty does not exist for the above algorithm:
a zero flow is feasible in the first iteration, while a maximal flow obtained in the
previous iteration is feasible in the current iteration (it follows from (4.10), (4.11))

Consider asymptotical estimates of a work time v,y and of a required memory
¢10 for the algorithm A,,. The asymptotical estimate of a work time of the algo-
rithm A, iterative step is determined by the analogous estimate for the algorithm
of finding a maximal flow in the network G7;. The best estimate among the known
algorithms has the form v/ = O(m?) [9], hence, taking into account that the num-
ber of iterations (ymax — ¥o) does not exceed the values g = E-‘e ;,(.’;i*z -y +1)
and an initial step asymptotical estimate (determined by the analogous estimate of
finding an extreme path in the network) has the order of O(M?), we obtain

vio = O(gom?). (4.12)

The volume of intermediate information in the algorithm A, is maximal when
the algorithm of finding a maximum flow is used within the general procedure. For
the best algorithm recommended for inclusion in A;q, such estimate has the form
O(M) from which qi0 = O(M]
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